library("stringr")
library("dplyr")
library("DESeq2")
library("ggplot2")
library("tibble")
library("AnnotationHub")
library("AnnotationDbi")
library("readr")
library("dplyr")
library("clusterProfiler")
library("GenomicFeatures")
library("GO.db")
library("BiocParallel")
library("DT")
library("WGCNA")
plot_labeling_size <- 15
prefix <- "t"
#input raw metatranscriptomics data
setwd("/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/MetaMetaTranscriptomics/")
dds_metatranscriptomics <- readRDS("/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/MetaMetaTranscriptomics/dds_metatranscriptomics.rds")
dim(dds_metatranscriptomics)
## [1] 117261 151
dds_metatranscriptomics <- dds_metatranscriptomics[ , dds_metatranscriptomics$TimePoint != "T0"]
keep <- rowSums(counts(dds_metatranscriptomics) >=5) >= 5
dds_metatranscriptomics <- dds_metatranscriptomics[keep,]
dim(dds_metatranscriptomics)
## [1] 73128 139
metatranscriptomics <- t(assay(vst(dds_metatranscriptomics)))
dim(metatranscriptomics) %>% paste(c("Samples", "metatranscriptomics"))
powers <- c(c(1:10), seq(from = 12, to=20, by=2))
sft <- pickSoftThreshold(metatranscriptomics,
powerVector = powers,
verbose = 1,
networkType = "signed",
corFn= "bicor")
saveRDS(sft, "/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/OmicsIntegration/sft.rds")
sft <- readRDS("/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/OmicsIntegration/sft.rds")
idx <- min(which((-sign(sft$fitIndices[,3])*sft$fitIndices[,2]) > 0.90))
if(is.infinite(idx)){
idx <- min(which((-sign(sft$fitIndices[,3])*sft$fitIndices[,2]) > 0.80))
if(!is.infinite(idx)){
st <- sft$fitIndices[idx,1]
} else{
idx <- which.max(-sign(sft$fitIndices[,3])*sft$fitIndices[,2])
st <- sft$fitIndices[idx,1]
}
} else{
st <- sft$fitIndices[idx,1]
}
data.frame(Indices = sft$fitIndices[,1],
sfApprox = -sign(sft$fitIndices[,3])*sft$fitIndices[,2]) %>%
ggplot() +
geom_hline(yintercept = 0.9, color = "red", alpha = 0.6) + # corresponds to R^2 cut-off of 0.9
geom_hline(yintercept = 0.8, color = "red", alpha = 0.2) + # corresponds to R^2 cut-off of 0.8
geom_line(aes(x = Indices, y = sfApprox), color = "red", alpha = 0.1, size = 2.5) +
geom_text(mapping = aes(x = Indices, y = sfApprox, label = Indices), color = "red", size = 4) +
ggtitle("Scale independence") +
xlab("Soft Threshold (power)") +
ylab("SF Model Fit,signed R^2") +
xlim(1,20) +
ylim(-1,1) + theme_bw() +
geom_segment(aes(x = st, y = 0.25, xend = st, yend = sfApprox[idx]-0.05),
arrow = arrow(length = unit(0.2,"cm")),
size = 0.5)-> scale_independence_plot
data.frame(Indices = sft$fitIndices[,1],
meanApprox = sft$fitIndices[,5]) %>%
ggplot() +
geom_line(aes(x = Indices, y = meanApprox), color = "red", alpha = 0.1, size = 2.5) +
geom_text(mapping = aes(x = Indices, y = meanApprox, label = Indices), color = "red", size = 4) +
xlab("Soft Threshold (power)") +
ylab("Mean Connectivity") +theme_bw() +
geom_segment(aes(x = st-0.4,
y = sft$fitIndices$mean.k.[idx],
xend = 0,
yend = sft$fitIndices$mean.k.[idx]),
arrow = arrow(length = unit(0.2,"cm")),
size = 0.4) +
ggtitle(paste0("Mean connectivity: ",
round(sft$fitIndices$mean.k.[idx],2))) -> mean_connectivity_plot
cowplot::plot_grid(scale_independence_plot, mean_connectivity_plot, ncol = 2, align = "h", labels = c("A", "B"), label_size = plot_labeling_size) -> si_mc_plot
si_mc_plot
modules.omics.MetaTrans <- blockwiseModules(metatranscriptomics,
power = st,
networkType = "signed",
TOMType = "signed",
corType = "bicor",
#maxPOutliers = 0.05,
#deepSplit = 4, # Default 2
minModuleSize = 21, # 30
#minCoreKME = 0.5, # Default 0.5
#minCoreKMESize = 2, # Default minModuleSize/3,
#minKMEtoStay = 0.5, # Default 0.3
#reassignThreshold = 0, # Default 1e-6
#mergeCutHeight = 0.2, # Default 0.15
#pamStage = pam_stage,
#pamRespectsDendro = TRUE,
#replaceMissingAdjacencies = TRUE,
nThreads = 10,
numericLabels = TRUE,
saveTOMs = FALSE,
saveTOMFileBase = "HOST_TOM",
verbose = 3,
maxBlockSize=8000)
hubs <- chooseTopHubInEachModule(metatranscriptomics, modules.omics.MetaTrans$colors, power = st, omitColors = "0")
stage2results_MetaTrans <- list(modules = modules.omics.MetaTrans,
hubs = hubs)
saveRDS(stage2results_MetaTrans, "/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/OmicsIntegration/stage2results_MetaTranscriptomics.rds")
saveRDS(modules.omics.MetaTrans, "/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/OmicsIntegration/modules.omics.MetaTrans.rds")
modules.omics.MetaTrans <- readRDS("/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/OmicsIntegration/modules.omics.MetaTrans.rds")
stage2results_MetaTrans <- readRDS("/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/OmicsIntegration/stage2results_MetaTranscriptomics.rds")
Convert labels to colors for plotting
merged_colors <- labels2colors(stage2results_MetaTrans$modules$colors)
n_modules <- unique(merged_colors) %>% length()
samples_good <- sum(stage2results_MetaTrans$modules$goodSamples) == length(stage2results_MetaTrans$modules$goodSamples)
genes_good <- sum(stage2results_MetaTrans$modules$goodGenes) == length(stage2results_MetaTrans$modules$goodGenes)
ME_good <- sum(stage2results_MetaTrans$modules$MEsOK) == length(stage2results_MetaTrans$modules$MEsOK)
table(stage2results_MetaTrans$modules$colors) %>%
as.data.frame() %>%
dplyr::rename(Module = Var1, Size = Freq) %>%
dplyr::mutate(Module_color = labels2colors(as.numeric(as.character(Module)))) -> module_size
module_size %>%
ggplot(aes(x = Module, y = Size, fill = Module)) +
geom_col(color = "#000000") +
ggtitle("Number of genes in each module") +
theme(legend.position = "none") +
scale_fill_manual(values = setNames(module_size$Module_color,module_size$Module)) +
geom_text(aes(label = Size),vjust = 0.5, hjust = -0.18, size = 3.5) +
ylim(0, max(module_size$Size)*1.1) +
theme(plot.margin = margin(2, 2, 2, 2, "pt")) +
coord_flip()-> module_size_barplot
module_size_barplot + theme_bw()
table(stage2results_MetaTrans$modules$colors) %>% as.data.frame() -> res
res$`Module color` <- WGCNA::labels2colors(as.numeric(as.character(res$Var1)))
res <- res[, c(1,3,2)]
colnames(res) <- c("Module", "Module color", "Number of metatranscriptomics")
# Plot the dendrogram and the module colors underneath for each block
for(i in seq_along(stage2results_MetaTrans$modules$dendrograms)){
plotDendroAndColors(stage2results_MetaTrans$modules$dendrograms[[i]], merged_colors[stage2results_MetaTrans$modules$blockGenes[[i]]],
"Module colors",
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05,
main = paste0("Cluster Dendrogram\n",
"for block ",
i,": ",
length(stage2results_MetaTrans$modules$blockGenes[[i]]),
" metatranscriptomics"))
}
MEs <- stage2results_MetaTrans$modules$MEs
# Module correlation to other modules
MEs_R <- bicor(MEs, MEs, maxPOutliers = 0.05)
idx.r <- which(rownames(MEs_R) == "ME0")
idx.c <- which(colnames(MEs_R) == "ME0")
MEs_R_noME0 <- MEs_R[-idx.r, -idx.c]
MEs_R_noME0[upper.tri(MEs_R_noME0)] %>%
as.data.frame() %>%
dplyr::rename("correlation" = ".") %>%
ggplot(aes(x=correlation)) +
geom_histogram(bins = 20) +
#geom_density() +
xlim(-1, 1) +
ggtitle(paste0(prefix,"ME correlation\n w/o ",prefix ,"ME0")) -> MEs_R_density
pheatmap::pheatmap(MEs_R_noME0, color = colorRampPalette(c("Blue", "White", "Red"))(100),
silent = T,
breaks = seq(-1,1,length.out = 101),
treeheight_row = 5,
treeheight_col = 5,
main = paste0(prefix,"ME correlation heatmap w/o ",prefix ,"ME0"),
labels_row = paste0(prefix, rownames(MEs_R)),
labels_col = paste0(prefix, colnames(MEs_R))) -> MEs_R_Corr
cowplot::plot_grid(MEs_R_density, MEs_R_Corr$gtable, labels = c("D", "E"), label_size = plot_labeling_size, rel_widths = c(0.6, 1)) -> density_eigen
all(rownames(metatranscriptomics) == rownames(MEs))
dim(metatranscriptomics) %>% paste0(c(" samples", " metatranscriptomics"))
kME <- bicor(metatranscriptomics, MEs, maxPOutliers = 0.05)
dim(kME) %>% paste0(c(" metatranscriptomics", " modules"))
intra_cor <- c()
for (i in 1:ncol(metatranscriptomics)) {
m <- stage2results_MetaTrans$modules$colors[i]
intra_cor[i] <- kME[i, paste0("ME", m)]
if(m != 0){
intra_cor[i] <- kME[i, paste0("ME", m)]
} else{
intra_cor[i] <- NA
}
}
idx <- which(is.na(intra_cor))
intra_cor <- intra_cor[-idx]
# Corr within modules
corr_within_module <- function(metatranscriptomics, modules, module_x = 1){
idx.metatranscriptomics <- which(modules$colors == module_x)
idx.me <- which(colnames(modules$MEs) == paste0("ME",module_x))
kME_x <- bicor(metatranscriptomics[,idx.metatranscriptomics], modules$MEs[,idx.me], maxPOutliers = 0.05)
kME_x
}
ggplot.list <- list()
for(m in colnames(stage2results_MetaTrans$modules$MEs)){
h <- as.numeric(sub("ME","", m))
data.frame(x = suppressWarnings(corr_within_module(metatranscriptomics = metatranscriptomics, modules = stage2results_MetaTrans$modules, module_x = h))) %>%
ggplot() +
#geom_density(aes(x = x), fill = labels2colors(h), color = "black", alpha = 0.5) +
geom_histogram(aes(x), fill = labels2colors(h), color = "black", alpha = 0.5, bins = 20) +
xlim(-1, 1) +
xlab("metatranscriptomics correlation")+
ggtitle(paste0(prefix,m)) -> da_plot
ggplot.list[[m]] <- da_plot
}
ggplot.list <- ggplot.list[ggplot.list %>% names() %>% sub("ME", "", .) %>% as.numeric() %>% order()]
cowplot::plot_grid(plotlist = ggplot.list, ncol = 6) -> density_all_plot
cowplot::plot_grid(si_mc_plot , density_eigen, ncol = 1, rel_heights = c(0.8,1)) -> part_1
cowplot::plot_grid(part_1, module_size_barplot, labels = c("", "C"), label_size = plot_labeling_size, rel_widths = c(1,0.5)) -> part_2
cowplot::plot_grid(part_2, density_all_plot, ncol = 1, rel_heights = c(0.8,1), labels = c("", "F"), label_size = plot_labeling_size)
dds_metatranscriptomics$group <- factor(paste0(dds_metatranscriptomics$TimePoint, dds_metatranscriptomics$Treatment))
design(dds_metatranscriptomics) <- ~ group-1
dds_metatranscriptomics <- DESeq(dds_metatranscriptomics, parallel = T)
resultsNames(dds_metatranscriptomics)
## [1] "groupT1ctr" "groupT1mc1" "groupT1mc2" "groupT1mn3" "groupT2ctr"
## [6] "groupT2mc1" "groupT2mc2" "groupT2mn3" "groupT3ctr" "groupT3mc1"
## [11] "groupT3mc2" "groupT3mn3"
annot_function_metatrans <- read_tsv("/Users/shashankgupta/Desktop/ImprovAFish/github/ImprovaFish/MetaMetaTranscriptomics/Total.DRAM.STx.bac.k2.total.annotations.tsv")
annot_function_metatrans <- annot_function_metatrans[, c("ID", "kegg_hit", "uniref_taxonomy","pfam_hits", "cazy_hits" )]
res <- results(dds_metatranscriptomics,
contrast = list("groupT1mc1","groupT1ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 10 and downregulated is 15"
res <- results(dds_metatranscriptomics,
contrast = list("groupT1mc2","groupT1ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 14 and downregulated is 9"
res <- results(dds_metatranscriptomics,
contrast = list("groupT1mn3","groupT1ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 11 and downregulated is 1"
res <- results(dds_metatranscriptomics,
contrast = list("groupT2mc1","groupT2ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 6 and downregulated is 2"
res <- results(dds_metatranscriptomics,
contrast = list("groupT2mc2","groupT2ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 32 and downregulated is 3"
res <- results(dds_metatranscriptomics,
contrast = list("groupT2mn3","groupT2ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 36 and downregulated is 0"
res <- results(dds_metatranscriptomics,
contrast = list("groupT3mc1","groupT3ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 10 and downregulated is 16"
res <- results(dds_metatranscriptomics,
contrast = list("groupT3mc2","groupT3ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 11 and downregulated is 9"
res <- results(dds_metatranscriptomics,
contrast = list("groupT3mn3","groupT3ctr"))
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
res_tbl <- merge(res_tbl, annot_function_metatrans, by.x = "ENSEMBL", by.y = "ID", all.x = TRUE )
# res_tbl %>%
# filter(log2FoldChange > 0) %>%
# select(pfam_hits, uniref_taxonomy)
DT::datatable(res_tbl)
paste("Total number of upregulated transcripts is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])[1],"and downregulated is",length(res_tbl$log2FoldChange[res_tbl$log2FoldChange<0])[1])
## [1] "Total number of upregulated transcripts is 12 and downregulated is 11"
# Create the dataframe (loop)
df <- data.frame(Group=character(), a1=character(), a2=character(), a3=character())
# Loop through each group and store the results in the dataframe
for(treatment in c("T1", "T2", "T3")){
for(group in c("mc1","mc2","mn3")){
sample_name <- paste0("group",treatment,group)
ctr_sample <- paste0("group",treatment,"ctr")
# Calculate results
res <- results(dds_metatranscriptomics, contrast = list(sample_name,ctr_sample))
# Filter the results and count the number of positive elements
res_tbl <- as_tibble(res, rownames = "ENSEMBL") %>%
filter(padj <0.05)%>%
arrange(padj)
a <- length(res_tbl$log2FoldChange[res_tbl$log2FoldChange>0])
# Store the results in the dataframe
df <- rbind(df, c(sample_name,a))
}
}
names(df) <- c("Groups", "DEGs")
DT::datatable(df)
Visualization of differenitally expressed genes
res <- results(dds_metatranscriptomics,contrast = list("groupT3mn3","groupT3ctr")) %>%
as.data.frame %>%
add_rownames(var = "Genes") %>%
filter(padj < 0.05) %>%
arrange(padj)
cat("DEGs: ", nrow(res))
vsd <- vst(dds_metatranscriptomics)
library(stringi)
p1 <- assay(vsd) %>%
as.data.frame %>%
add_rownames(var = "Genes") %>%
filter(Genes %in% res$Genes[1:23]) %>%
gather(Sample, Expression, -Genes) %>%
mutate(Treatment = stri_replace_all_regex(Sample, colnames(dds_metatranscriptomics), dds_metatranscriptomics$Treatment, vectorize=FALSE)) %>%
ggplot(aes(x = Treatment, y = Expression, color = Treatment)) +
geom_boxplot() +
facet_grid(rows = vars(Genes)) + theme_bw()
p2 <- assay(vsd) %>%
as.data.frame %>%
add_rownames(var = "Genes") %>%
filter(Genes %in% res$Genes[1:23]) %>%
gather(Sample, Expression, -Genes) %>%
mutate(TimePoint = stri_replace_all_regex(Sample, colnames(dds_metatranscriptomics), dds_metatranscriptomics$TimePoint, vectorize=FALSE)) %>%
ggplot(aes(x = TimePoint, y = Expression, color = TimePoint)) +
geom_boxplot() +
facet_grid(rows = vars(Genes)) + theme_bw()
cowplot::plot_grid(plotlist = list(p1,p2), ncol = 2)